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Optimal Control Model of Technology Transition∗

Donald A. Hanson,†Yaroslav Kryukov,‡Sven Leyffer, and Todd S. Munson§

September 25, 2008

Abstract

This paper discusses the use of optimization software to solve an optimal control problem
arising in the modeling of technology penetration. We set up a series of increasingly complex
models with such features as learning by doing, adjustment cost, and capital investment. The
models are written in continuous time and then discretized by using different methods to trans-
form them into large-scale nonlinear programs. We use a modeling language and numerical
optimization methods to solve the optimization problem. Our results are consistent with find-
ings in the literature and highlight the impact the discretization choice has on the solution and
accuracy.

1 Introduction

Our goal is to compute an optimal transition from conventional (old) to low-emission (new) tech-
nology for energy production. The new technology has higher costs but a lower emission rate of
greenhouse gases, making it possible to reduce emissions without substantial reductions in energy
consumption that would be necessary using only the old technology.

We are interested in the socially optimal output schedules of both technologies; these tell us
the best possible scenario that could be achieved if the entire energy industry were controlled
by a (benevolent and omniscient) single agency. In reality, the energy industry consists of many
independent firms, which have to be motivated by policy measures to adopt the new technology.
Our model could generate several important inputs to construct such a policy. First, our model
determines the optimal output schedule, or transition path, that serves as the ultimate goal of the
policy. Second, our model can be used to compute the exact amount of policy intervention (tax
rate, emission quota, etc.) Third, if a policy fails to achieve the optimal transition, our model can
show how large the shortfall is and whether correcting it justifies the additional effort.

We seek to develop a model that provides a realistic transition path; in other words, the output
of either technology should be a continuous, but not necessarily smooth, function of time. In
addition, the total energy output should be increasing over time.
∗Preprint ANL/MCS-P1544-0908
†Decision and Information Sciences, Argonne National Laboratory dhanson@anl.gov
‡Tepper School of Business, Carnegie Mellon University, kryukov@andrew.cmu.edu
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The increasing energy output is considered necessary given the continued growth of world
population and economic well-being. Gradual transition is motivated by historic data on actual
technology transitions that find the penetration rate of the new technology to be an S-shaped
function of time—although it is increasing throughout the entire transition period, the penetration
rate is convex during the early stages of transition, then passes through an inflection point, and
turns concave as it approaches full adoption; see Jensen (1982) and Geroski (2000). To be consistent
with these results, we develop models with various features such as learning by doing in the new
technology, which reduces the unit cost as the cumulative output increases; transition costs, which
penalize fast changes in output; and capital investment.

Our paper considers the following economic concepts: technology diffusion, environmental pol-
icy, and learning by doing. Popp (2004) provides a concise overview of these concepts. The diffusion
(adoption) literature studies the technology adoption by individual firms and focuses on factors that
cause firms to adopt at different times, and the shapes of transition paths observed in the past.
Jensen (1982) quotes a number of studies that find the initial (convex) stage to be relatively short;
sometimes it is not present at all, leading to a kink in the adoption path when the adoption starts
and a concave shape after that. Cabral (1990) concentrates on the inflection point of an S-shaped
function, arguing that it is an approximation to a discontinuous jump.

Jensen (1982, 1983) assumes some firms need more time than others to convince themselves that
adoption is worthwhile; their model generates both S-shaped and concave transition paths. Tonks
(1986) has a consumer cautiously discovering a new good, leading to a concave adoption path that
overshoots the long-term asymptote. Cabral (1990) assumes some firms will not join until they see
adoption by a certain share of the market; he generates discontinuities (vertical segments) in the
adoption path. Balcer and Lippman (1984) assume multiple generations of a technology, whereas
a firm will not adopt if a new technology does not offer a substantial improvement over the al-
ready installed one or if a better technology is expected to be released soon. Abstracting from
economics, Geroski (2000) discusses diffusion models based on ideas from epidemiology, sociology,
and information dissemination. Benhabib and Spiegel (2005) look at the diffusion of general tech-
nological knowledge between countries rather than firms; they find different rates of convergence
to the “world leader” and explain them by different levels of education.

A related area of economic research studies environmental policy, specifically government mea-
sures aimed at inducing the firms to behave in a socially optimal way. Milliman and Price (1989)
demonstrate (in theory) how frequently suggested policies such as emission taxes, subsidies, and
tradable permits induce innovation and diffusion of cleaner technology. Newell et al. (2006) provide
empirical evidence supporting both the effectiveness of such policy measures and profit maximizing
behavior predicted by the diffusion literature.

Woerlen (2004) provides an overview of learning by doing, discussing both the theoretical issues
and evidence of the experience-driven reduction in capital cost of the alternative energy.

Our results contribute to this literature on both the economic and the methodological side.
The different models we develop demonstrate different forms of transition behavior, suggesting



Optimal Control Model of Technology Penetration 3

that our optimal transition paths are potentially implementable by policy intervention. From an
economic standpoint, we demonstrate that the realistic gradual transition can be generated without
resorting to multiple agents and is, in fact, socially optimal under reasonable assumptions. We find
that learning by doing alone leads to discontinuous instant transition; adding adjustment costs
ensures continuous and smooth transition. Our capital investment model results in a transition
path that is continuous and concave after the initial kink.

From a methodological standpoint, our paper offers several important insights. First, we re-
examine the use of discrete-time models to approximate the continuous-time model. A typical
economic paper assumes discrete time with a period of one year. This decision is driven by the
annual nature of input data and an assumption that the length of the period does not affect results.
We adopt a more cautious approach: we formulate the model in continuous time, then discretize
it using several discretization methods, and vary the period length until all discretization methods
converge. In at least one case, we demonstrate how a large period length combined with a dis-
cretization method commonly used in economics can lead to a solution that differs from the true
solution in a fundamental way. Second, we use modern computational tools to solve our dynamic
problems. In the studies discussed above, the optimization is performed analytically, which is pos-
sible only for highly stylized models that do not describe actual industries. Numerical methods
overcome this constraint and allow us to solve more realistic problems.

In the past, the limited power of early computers and the large scale of dynamic problems
forced computational economists to use indirect approaches, most notably replacing an optimiza-
tion problem with a system of optimality conditions, and applying Gauss-Jacobi or Gauss-Seidel
iterations of updating the vector of variables one component at a time. However, these methods
are notoriously slow and unreliable. Moreover, using (first-order) optimality conditions requires
careful assumptions about curvature. We solve the original optimization problem instead, avoid-
ing the need both to derive optimality conditions and to implement the solution algorithm. The
combination of modern computers and optimization algorithms allows us to solve problems with
thousands of variables in seconds.

Moreover, we demonstrate the ease with which a high-level modeling language such as AMPL
(Fourer et al., 2003), can be used to experiment with the models. Unlike programming languages
(C, Fortran), the modeling language allows the users to specify the model in its original algebraic
form.

The rest of the paper is structured as follows. Section 2 develops the various models, Section 3
explains the discretization method, Section 4 presents the results, and Section 5 discusses possible
extensions.

2 Model Description and Background

We solve the social planner’s problem of maximizing the social welfare, with the condition that
total accumulated emissions at a certain point in time will not exceed the specified level. Our
variables are energy output schedules of old and new technology, where the new technology has
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lower emissions but is more expensive, although its costs are expected to decrease with wider
adoption. We formulate a number of models with increasing detail and features.

2.1 Common Economic Components and Parameters

We first define the components common to all three models. Specific functional forms are chosen
for demonstration; however, our approach is not limited to these, and other choices are possible.

Time. All our model are dynamic, with continuous time and finite horizon: t ∈ [0, T ]. We denote
functions of time as x(t) and their derivatives as

ẋ(t) =
dx(t)
dt

.

We use continuous discounting with the rate r > 0.

Energy Output. There are two technologies, old and new, and their energy output at time t is
denoted qo(t) and qn(t), respectively. We also define the total output to be Q(t) = qo(t) + qn(t).

Demand and Consumer Surplus. The benefit of energy to society is represented by the con-
sumer surplus S̃(Q, t), computed as the integral of demand and scaled by the demand growth
rate (hence the dependence on time). In our models, we use the following functional form for the
consumer surplus:

S̃(Q, t) = ebtS(Qe−bt), (2.1)

where b > 0 is the growth rate of demand. The consumer surplus is derived from the constant
elasticity of substitution (CES) utility, as described in Appendix A:

S(Q) =
∫
p(q)dq

∣∣∣∣
q=Q

=
∫
S0

qσ
dq

∣∣∣∣
q=Q

=

{
S(Q) = S0 lnQ, if σ = 1
S0

1−σQ
1−σ, otherwise,

where σ > 0 is the demand parameter. The functional form of (2.1) is due to the fact that the
growth factor ebt is applied to the direct demand function q(p) rather than the inverse demand
p(q).

Production Costs. We assume constant marginal costs. Each unit of energy is produced with
the old technology costs co. The cost of the new technology is subject to learning by doing; that
is, the unit cost cn(x(t)) is a decreasing function of cumulative output, which we define as

x(t) =
∫ t

0
qn(τ)dτ. (2.2)
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Following the economic literature (Woerlen, 2004) and discussion in Appendix A, we let

cn(x) = c0n

[ x
X̄

+ 1
]log2 γ

, (2.3)

where the parameters X̄ and γ are described in Table 1.

Greenhouse Gases Emissions. Producing energy generates greenhouse gases at the unit rate
of bo > 0 with the old technology and bn ∈ (0, bo) with the new technology. We are interested in
limiting cumulative emissions at the end of the modeling period. Since earlier emissions do more
damage (for example, by the irreversible reduction of glaciers), we discount the emissions at the
environmental time preference rate a. We use a ∈ (0, r), but there also exist economic justifications
for a = 0 or a > r. The constraint on cumulative emission is∫ T

0
e−at

(
boq

o(t) + bnq
n(t)

)
dt ≤ zT . (2.4)

Units and Parameters. We make our definitions more precise by setting specific units and
parameter values. The quantities (q(t)’s, x(t)) are in “quads,” or billion of millions (1015) of
BTUs1; monetary amounts (objective, S(Q), etc.) are in billions of dollars; and emissions are
measured in billion tons of carbon (tC). See Table 1.

Table 1: Parameter values common to all models

Parameter Unit Notation Value
Discount rate - r 0.05
Demand exponent - σ 2.0
Demand scale $B S0 98,000
Demand growth rate - b 0.015
Environmental rate - a 0.02
Emissions, old tech. tC/mBTU bo 0.02
Emissions, new tech. tC/mBTU bn 0.001
Unconstrained emissions BtC Zmax 61.9358
Emission reduction % - ζ 0.5
Production cost, old tech. $/mBTU co 20
Starting cost, new tech. $/mBTU c0n 50
Learning rate - γ 0.85
Initial experience quad x0 0
Experience unit size quad X̄ 300

The emission cap is computed as zT = (1−ζ)Zmax, where Zmax equals the cumulative emissions
when they are not constrained (which naturally leads to zero utilization of the new technology).
The cost parameters γ and X̄ were selected to achieve cn(x(T )) ≈ 30, a 60% reduction in unit cost

1British thermal unit (BTU) is the unit of energy used in power industry. It is equal to 1,055 joules.
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by the end of the modeling period (but still more expensive than the old technology with its unit
cost of 20). The demand scale is calibrated to match current output level: qo(0) + qn(0) = 60.

2.2 Model I: Basic Model

The first model takes into account only the effect of learning by doing and selects the energy output
schedules to maximize the net discounted welfare without exceeding the emission cap. The model
is an optimal control problem. Energy output amounts qo(t), qn(t) are the controls, and the state
variables are the experience level x(t) and the accumulated emissions z(t):

maximize
{qo,qn,x,z}(t)

∫ T

0
e−rt

[
S̃(qo(t) + qn(t), t)− coqo(t)− cn(x(t))qn(t)

]
dt (2.5a)

subject to ẋ(t) = qn(t), x(0) = x0 = 0 (2.5b)

ż(t) = e−at
(
boq

o(t) + bnq
n(t)

)
, z(0) = z0 = 0 (2.5c)

z(T ) ≤ zT (2.5d)

qo(t) ≥ 0, qn(t) ≥ 0. (2.5e)

The objective (2.5a) is the discounted net welfare, computed as the difference between consumer
surplus and production cost. Constraint (2.5b) defines the cumulative output x(t) and is a trans-
formation of (2.2) into a differential equation; this transformation has the advantage that the
discretized equations are sparse, allowing us to use the large-scale nonlinear programming (NLP)
solvers. Constraints (2.5c) and (2.5d) represent the cumulative emission cap (2.4); (2.5c) is again a
differential constraint that defines z(t) to be cumulative emissions at time t, and (2.5d) imposes the
cap. Constraint (2.5e) requires that output amounts be nonnegative. We do not need to impose a
nonnegativity constraint on x(t) because (2.5b) and (2.5e) guarantee it.

2.3 Model II: Adjustment Cost

Model I is rather simplistic and does not take adjustment costs into account. As a consequence,
the resulting transition shows an instantaneous switch, or bang-bang control. Hence, we refine the
model by imposing an adjustment cost on the increase in new energy output, qn(t). Keeping the
rest of model components the same, we define

y(t) = max{0, q̇n(t)}, (2.6)

the positive change in qn(t). We use it to penalize the rate of change in the output of the new
technology by subtracting the adjustment cost cyy2(t) from the objective. The power on y(t) makes
the adjustment cost convex to reflect the difficulty of rapid change. The only new parameter is the
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scale of the adjustment cost, which we set as cy = 10. The model is given by

maximize
{qo,qn,x,y}(t)

∫ T

0
e−rt

[
S̃(qo(t) + qn(t), t)− coqo(t)− cn(x(t))qn(t)− cyy2(t)

]
dt (2.7a)

subject to ẋ(t) = qn(t), x(0) = x0 = 0 (2.7b)

q̇n(t) ≤ y(t), qn(0) = 0 (2.7c)

0 ≤ y(t) (2.7d)

ż(t) = e−at[boqo(t) + bnq
n(t)], z(0) = z0 = 0 (2.7e)

z(T ) ≤ zT (2.7f)

qo(t) ≥ 0, qn(t) ≥ 0. (2.7g)

We retain all the model components from the previous subsection; objective (2.7a) now includes
the adjustment cost term cyy

2(t).

The new constraints are (2.7c) and (2.7d), which are an equivalent way of stating (2.6) because
the objective term ensures that at least one of the constraints (2.7c)–(2.7d) does bind. The initial
condition on qn(0) is necessary for a well-defined problem but does not affect the solution because
we have qn(t) = 0 for sufficiently small t’s.

2.4 Model III: Capital Investment

The penalty on the rate of increases in output is a somewhat artificial construct. The resulting
adjustment cost was motivated by the need to build up capacity in the new technology. Here,
we model this capital investment directly. To simplify the notation, we index the technologies by
j ∈ {o, n}.

Capital and Investment. Kj(t) is the amount of capital in technology j at time t. It is increased
by an investment Ij(t) and depreciates at a constant annual rate of δ ∈ (0, 1). We denote the initial
capital level as K̄j

0 .

Costs. Instead of the constant unit costs (cq) used in the previous models, Cj(q,K) now denotes
the total cost of producing energy quantity q with technology j and capital K. We expect Cj(q,K)
to be increasing and possibly convex in q (increasing marginal costs) and decreasing and concave
in K (decreasing marginal productivity of capital). We also expect Co(q,K) < Cn(q,K) to reflect
the higher costs of the new technology. As explained in Appendix A, the specific functional form
that satisfies these conditions can be derived from the Cobb-Douglas production function:

Cj(q,K) = Aj

[ q

Kαj

]1/βj

, (2.8)

where αj ∈ (0, 1) and βj ∈ (0, 1) represent relative intensities of capital and other inputs and Aj > 0
is a generic scaling factor.
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Further, we assume that the costs of new technology are affected by the learning:

C̃n(q,K, x) =
[ x
X̄

+ 1
]log2 γ

Cn(q,K).

Table 2: Additional parameter values: Model III (capital)

Parameter Unit Notation Value
Old tech. scale $B Ao 36.52
New tech. scale $B An 91.30
Old tech. capital exponent - αo 0.2
New tech. capital exponent - αn 0.2
Old tech. other exponent - βo 0.8
New tech. other exponent - βn 0.8
Old tech. initial capital - K̄o

0 1900
New tech. initial capital - K̄n

0 1
Depreciation rate - δ 0.1
Unconstrained emissions tC Zmax 61.4698

Parametrization. The additional parameter values are listed in Table 2. The cost functions
Cj(q,K) and capital accumulation process (δ, f(I),Kj

0) are calibrated to match statistics of the
basic model: co(0) = 20, cn(T ) ≈ 30, qo(0) ≈ 60.

Kn
0 = 1 is a token level to avoid division by zero in the cost function; setting Ko

0 much higher
implies that we start out with fully developed old technology. Zmax is changed because, despite
our best efforts at calibrating the models to be similar, the different structure of the capital model
implies a change to the optimal output level when emission are unconstrained (which is how zT is
determined).

Model. To keep the notation concise, we define several aggregate variables.

Q(t) = qo(t) + qn(t) C(t) = Co(qo(t),Ko(t)) + Cn(qn(t),Kn(t))

I(t) = Io(t) + In(t) K(t) = Ko(t) +Kn(t)
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The new optimal control problem is given by

maximize
{qj ,Kj ,Ij ,x,z}(t)

{∫ T

0
e−rt

[
S̃(Q(t), t)− C(t)−K(t)

]
dt+ e−rTK(T )

}
(2.9a)

subject to ẋ(t) = qn(t), x(0) = x0 = 0 (2.9b)

K̇j(t) = −δKj(t) + Ij(t), Kj(0) = K̄j
0 j ∈ {o, n} (2.9c)

ż(t) = e−at[boqo(t) + bnq
n(t)], z(0) = z0 = 0 (2.9d)

z(T ) ≤ zT (2.9e)

qj(t) ≥ 0, j ∈ {o, n} (2.9f)

Ij(t) ≥ 0, j ∈ {o, n}. (2.9g)

Objective (2.9a) now computes the net welfare as the difference between consumer surplus and
both production and investment costs. The new term (e−rTK(T )) is used to avoid the terminal
effects that arise because we use a finite-horizon approximation to an infinite-horizon problem.
Without this correction, we would see the investment fall to zero as we approach t = T , causing
a decline in capital and subsequent slowdown or decline in Q. The correction method we use can
be interpreted as getting back the investment at the end of modeling period. This is not the only
possible correction; see Barr and Manne (1967) and Lau et al. (2002) for a discussion of correction
terms.

Constraint (2.9c) defines the law of motion for the capital—it is increased by investment and
decreased by depreciation. Constraints (2.9d)–(2.9f) are identical to previous models; (2.9g) adds
nonnegativity constraint on investment. While (2.8) requires Kj(t) > 0, we do not impose that
constraint because (2.9c) and (2.9g) ensure that it holds.

3 Discretized Optimal Control Problem

In practice, we cannot expect to solve the optimal control problems like (2.5), (2.7), and (2.9)
explicitly. We therefore approximate them by a finite-dimensional problem obtained by discretizing
the time-dependent functions and collocating at a finite number of points. This approach results
in NLPs that we can solve using large-scale optimization methods. The approach is discussed in
detail by Betts (2001).

We discretize time t ∈ [0, T ] by N + 1 equally spaced points ti = ih, where h := T/N is
the step size and i = 0, 1, 2, ..., N . Our convention is that qni approximates qn(t) at ti, namely,
qni = qn(ti) = qn(ih), with a similar convention for other variables.

Next, we discretize the differential equations such as (2.5b) by applying one of three Runge-
Kutta methods and collocating at the discretization points,

xi+1 = xi + hqni , xi+1 = xi + hqni+1, and xi+1 = xi + h
qni + qni+1

2
,

for the explicit Euler scheme, the implicit Euler scheme, and the trapezoidal method, respectively.
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We note that the implicit Euler method and the trapezoidal method are implicit schemes. Since
we are solving optimization problems, however, the complexity is not significantly increased. The
Euler methods are both first-order accurate, while the trapezoidal rule is second-order accurate.
For illustration, we use explicit Euler for Model I, implicit Euler for Model II, and trapezoidal for
Model III. We note, however, that our AMPL models are set up so that each model can use any
discretization.

3.1 Discretization of Model I (Basic)

The model variables are {qoi , qni , xi, zi}Ni=0 ∈ R4(N+1). To simplify the model statement, we define

Wi = e−rhi
[
S̃{qoi + qni , t} − coqoi − cn(xi)qni

]
gi = e−ahi[boqoi + bnq

n
i ].

With the explicit Euler discretization, the continuous problem (2.5) becomes

maximize
qo
i ,q

n
i ,xi,zi

h

N−1∑
i=0

Wi (3.1a)

s.t.: xi+1 = xi + hqni , i = 0, ..., N − 1; x0 = 0 (3.1b)

zi+1 = zi + hgi, i = 0, ..., N − 1; z0 = 0 (3.1c)

zN ≤ zT (3.1d)

qoi ≥ 0, qni ≥ 0, i = 0, ..., N. (3.1e)

3.2 Discretization of Model II (Adjustment Cost)

The model variables are {qoi , qni , xi, zi, yi}Ni=0 ∈ R5(N+1), and the objective term becomes

Wi = e−ihr
{
S(qoi + qni )− coqoi − cn(xi)qni − cay2

i

}
,

where yi is the discretization of y(t). The implicit Euler discretization of model (2.7) is given by



Optimal Control Model of Technology Penetration 11

maximize
qo
i ,q

n
i ,xi,zi,yi

h

N−1∑
i=0

Wi (3.2a)

s.t.: xi+1 = xi + hqni+1, i = 0, ..., N − 1; x0 = 0 (3.2b)

qni+1 ≤ qni + hyi+1 i = 0, ..., N − 1; , qni = 0 (3.2c)

0 ≤ yi, i = 0, ..., N − 1; (3.2d)

zi+1 = zi + hgi+1, i = 0, ..., N − 1; z0 = 0 (3.2e)

zN ≤ zT (3.2f)

qoi ≥ 0, qni ≥ 0, i = 0, ..., N. (3.2g)

The differential inclusion (3.2c) is a new type of constraint, but it poses no difficulty for our
optimization method.

3.3 Discretization of Model III (Capital Investment)

The model variables now are {qji , I
j
i ,K

j
i , xi, zi}Ni=0 ∈ R7(N+1), and the new objective term is

Wi = e−ihr {S(qoi + qni )− Co(qoi ,Ko
i )− Cn(qni ,K

n
i )− Ioi − Ini } .

We also define
kji := −δKj

i + Iji .

The trapezoidal discretization of model (2.9) is

maximize
{qj

i ,K
j
i ,I

j
i ,xi,zi}

{
h

N−1∑
i=0

Wi + e−rNH(Ko
N +Kn

N )

}
(3.3a)

subject to xi+1 = xi + h
qni + qni+1

2
x0 = 0 (3.3b)

Kj
i+1 = Kj

i + h
kji + kji+1

2
, Kj

0 = K̄j
0 j ∈ {o, n} (3.3c)

zi+1 = zi + h
gi + gi+1

2
, z0 = 0 (3.3d)

z(T ) ≤ zT (3.3e)

qji ≥ 0, j ∈ {o, n} (3.3f)

Iji ≥ 0, j ∈ {o, n}. (3.3g)

4 Numerical Solution and Results

All models are coded in the AMPL modeling language (Fourer et al., 2003). and solved by using
KNITRO (Byrd et al., 2006). Unless specified otherwise, we use trapezoidal discretization with
h = 0.1. The AMPL code is available online and is briefly described in Appendix B.
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Several advantages accrue from attacking the problem directly as an optimal control problem,
instead of following the Hamiltonian formalism. For example, we can easily include bounds on
the controls in the optimal control problem. Further, tackling the optimization directly gives
the numerical algorithms a better chance at finding maximizers instead of minimizers, or other
stationary points, that are not distinguishable from the first-order conditions.

Figure 1: Optimal energy output schedules (qo(t), qn(t)) for the three models. Emission reduction
rate ζ = 0.5.

Figure 1 presents the optimal output quantities (qj(t)) for our three models. We achieve tran-
sition in all cases, in the sense that qn(0) = 0 and qo(T ) = 0. The common parametrization of
demand ensures that qo(0) is similar for all models. Looking at qn(T ), we see that the addition of
adjustment costs in Model II predictably decreases it; Model III is not directly comparable to the
other models.

Our key interest is the shape of the output schedules. Model I shows an instant transition;
that is, there is no point in time where both qo(t) and qn(t) are positive. This is clearly not a
realistic model. Model II has a continuous and smooth S-shaped transition, which is one of the
common shapes of transition paths observed in the past (Jensen, 1982). Model III has a continuous
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transition with a kink at the start, followed by a concave segment, which is another historic shape
described by Jensen (1982). Growth in total output is virtually unaffected by the transition, and
appears to be linear, which is consistent with what we have seen in Model I.

Table 3: Computation time for various discretization methods and period lengths (h).

Model I Model II Model III
Step length h 1.0 0.5 0.1 1.0 0.5 0.1 1.0 0.5 0.1
Number of variables 200 400 2000 249 499 2499 400 800 4000
Number of constraints 100 200 1000 149 299 1499 202 402 2002
Computation time, s

Explicit Euler 0.040 0.168 3.487 0.141 0.443 7.191 0.052 0.105 0.642
Implicit Euler 0.092 0.460 3.483 0.143 0.422 8.191 0.053 0.108 0.647
Trapezoidal 0.058 0.196 3.841 0.218 0.445 10.400 0.060 0.119 0.684

Table 3 shows the computation time for the three models and various discretization methods
and step lengths. We see that step length is the main determining factor of the computation time.
This result is expected because h determines the number of periods in the discretization scheme
(N = T/h) and hence the number of variables and constraints. Given the same h, the discretization
method does not matter nearly as much; moreover, no one method turns out to be the fastest across
all step lengths. In the remainder of the section, we discuss the results of models I and III.

4.1 Discussion of Model I (Basic)

Figure 2: Model I (Basic). Optimal output for the new technology (qn(t)) for various discretization
methods and period lengths (h).
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Figure 2 presents the solution to Model I given different discretizations methods and period
lengths (h). We present the output only for the new technology, because the output for the old
technology evolves in a symmetric fashion.

Clearly, the “smooth” transition that we observe for larger period lengths is an artifact of the
discretization. As h→ 0, the solution approaches the instantaneous transition, which corresponds
to the solution of the continuous-time model (2.5). We note that Euler methods carry a discretiza-
tion error proportional to O(h), making solutions with h = 1 or coarser time-steps questionable.

Further, the explicit Euler method results in qualitative error; while the trapezoidal and implicit
Euler methods achieve transition in a single time-step, the explicit Explicit method takes 2–3
periods, creating the illusion of a smooth transition. The explicit Euler method stands out because
the two other discretization methods are both implicit. Economically, an implicit method means
that the firms begin to enjoy the benefits of learning before the period is over; that is qni affects
the total cost (cn(xi)qni ) both directly and through xi. Numerically, we prefer the use of implicit
methods because they are better suited to stiff differential equations and differential algebraic
equations that are found in optimal control problems.

4.2 Discussion of Model III (Capital)

Figure 3: Model III (Capital). Optimal output, investment, and capital given 50% reduction in
emissions.

Figure 3 presents the detailed solution to Model III, which is substantially different from the
other ones. The total energy output continues to increase throughout the transition from old to
new technology. The finite-horizon correction successfully eliminates terminal effects.

The investment schedule is discontinuous for both technologies, which seems reasonable, unlike
the jump in outputs. Prior to the start of transition, there is period of zero investment into both
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Figure 4: Model III (Capital). Left: the optimal qn(t) for various reductions targets ζ. Right: the
corresponding abatement costs. the x-axis plots ζ, the y-axis the reduction in maximized objective
from the case of ζ = 0.

technologies, as the model waits for the old capital to depreciate before replacing it with the new
technology. Once the transition starts, investment into the new technology spikes as the model
tries to ramp up output to reap benefits of learning by doing.

The ease of computing the solutions allows us to study the impact of parameter values. For
example, we can investigate the sensitivity to the emission reduction percentage by changing ζ

illustrated in Figure 4. The left panel shows that smaller emission reductions require lower use of
new technology and permit the transition to happen later. The right panel shows the social cost of
reducing emissions. The convex shape is consistent with the increasing marginal costs commonly
observed in economics.

5 Comments and Extensions

The primary goal of this paper is to develop solution methods for use in policy work. To do this,
we will need to expand the model to include realistic features such as additional technologies and
capital conversion. Our modeling approach allows us to add new technologies with minimal effort.
For example, Figure 5 presents the solution to the capital model that includes a third technology,
nuclear fusion, that is emission free but even more expensive (A3 > An). We observe that industry
first transitions to the intermediate technology but eventually adopts the cleanest one.

Another direction for further development of the model is the combination of learning by doing,
transition costs, and capital accumulation in a single model but in a more industry-specific way.
As Woerlen (2004) noted, learning-by-doing effects apply to the production of equipment, rather
than to the energy generation itself. This fact suggests that experience should reduce investment
rather than production cost, replacing Ij in (2.9a) with an investment cost function f(Ij ,Kj) that
is increasing in I but decreasing in K.

Further, it is reasonable to allow the (costly) conversion of capital from one technology to the
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Figure 5: Capital model III with three technologies. Optimal output, investment, and capital given
80% reduction in emissions.

other (e.g., from fossil to biofuel). To avoid instant conversion, we could constrain the conversion
rate from above or make the conversion costs convex. We might, however, need to take into account
the shutdown time necessary to perform the conversion.

We note that our solutions have few areas of large curvature and are relatively smooth elsewhere.
On such smooth segments, we can achieve adequate precision with relatively large periods, which
means fewer variables and increased computation speed. But we still need a small step length during
the transition period. Adaptive mesh refinement methods have been developed to automatically
identify the areas where extra precision is needed. Betts (2001) describes how the computation
time can be reduced by a factor of 2.
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A Functional Forms and Model Parameters

Demand and Consumer Surplus S(q) is derived from CES demand, which reduces to either
a power function (with negative exponential) or a log function. We use an indefinite integral to
compute surplus; neither formulation would be defined if we took a definite integral from 0 to Q.
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Demand Growth is represented by (2.1) above; here we show its derivation. We assume that
the demand growth takes the form

q̃(p, t) = ebtq(p),

where q(p) represents demand at t = 0, and is a monotone decreasing function. Hence, there exist
inverse demand functions p(q) and p̃(q, t) that are related as follows:

p̃(q, t) = p(q/ebt).

Consumer surplus is defined as an indefinite integral of inverse demand

S̃(q, t) =
∫
p̃(q, t)dq =

∫
p(q/ebt)dq = ebt

∫
p(q/ebt)d(q/ebt) = ebtS(q/ebt) + C,

where S(q/ebt) =
∫
p(q)dq and C is a constant of integration. Since S̃ is part of the objective, the

constant does not affect the solution of the optimization problem.

Unit Cost Function cn(x) (also called “learning curve”) is given by

cn(x) = c0n

[ x
X̄

+ 1
]log2 γ

. (A.1)

The interpretation of the exponent is that whenever experience doubles, c(x) is multiplied by γ.
The constant c0n represents the cost at the top of the learning curve (x = 0). Since scale of demand
would make optimal qn’s (and resulting x’s) relatively large, the unit size of experience X̄ scales x.
The scaled experience is shifted by unity to ensure that cn(x) is decreasing for x ≥ 0.

Total Cost Function (2.8) is used with the capital model (2.9). Let us assume that the energy
production process uses two types of inputs—K units of capital and B units of other inputs (e.g.,
materials). The Cobb-Douglass production function translates these into output amount q:

q = DKαBβ. (A.2)

Our model accounts for costs of capital via investment, so any additional cost of production is
associated with other input B. Assume its price is pB. Then the cost of producing q is

C(q,K) = pBB

= A
[ q

Kα

]1/β
,

where A = pBD
−1/β.
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B Description of the AMPL Code

The AMPL code for all three models is available at www.mcs.anl.gov/~leyffer/OptTechPen. In
this appendix, we briefly describe the code for Model I and use it to highlight key features of AMPL
language. The code consists of several files.

Z run.ampl is the “run file” that incorporates all commands necessary to set up the model, solve
it, and produce output. The run file also allows the user to change the discretization method
and period length. To run it, one types ampl Z run.ampl at the command prompt.

Z optpen.mod is the main model file that sets the parameter values, declares model variables,
and defines the constraints and other relationships that are independent of the discretization
method.

Z EE.mod, Z EI.mod, Z Tr.mod are three additional model files describing the model compo-
nents specific to the explicit Euler, implicit Euler, and trapezoidal discretization, respectively.
Only one of these files should be used; the user can change the discretization method by
(un)commenting lines in Z run.ampl.

Unlike programming languages (C, Fortran), which concentrate on computing outputs from
inputs, modeling languages such as AMPL define the algebraic relationships between variables;
the model is then submitted with a single command to one of many available solvers. AMPL has
several types of statements; we illustrate them using examples of code from Model I.

Parameters are the constants that cannot be changed by the solver. One can set parameters
equal to specific numbers, for example T = 50 and N = 500, or compute them from other param-
eters, such as h = T/N .

param tf := 50;

param hn := 500;

param h := tf/nh;

Variables can be declared along with constraints on them or default values, such as the outputs
(qji , i = 1, ..., N), which are declared to be nonnegative and given a default value of zero. Variables
can also be declared to be a function of other variables and parameters, thus creating an implicit
constraint, such as computation of total output Qi.

var qo {0..nh} >=0, :=0;

var qn {0..nh} >=0, :=0;

var Q {i in 0..nh} = qo[i] + qn[i];
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Objective The objective (3.1a) is represented as

maximize DiscWelf: sum {i in 0..nh-1} h*welf[i];

where welf[i] stands in for Wi and DiscWelf is the variable that receives the maximized value of
objective.

Constraints are directly specified. For example, the constraint (3.1b) becomes

subject to ode_x {i in 0..(nh-1)}: x[i+1] = x[i] + h * qn[i];

where ode x is the name assigned to that constraint (we could use it, for example, to retrieve the
shadow cost of this constraint).
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